a2 United States Patent
Ngo et al.

US009203931B1

US 9,203,931 B1
Dec. 1, 2015

(10) Patent No.:
(45) Date of Patent:

(54) PROXY SERVER TESTING

(71) Applicant: Amazon Technologies, Inc., Reno, NV
(US)

(72) Inventors: Choi Yong Ngo, Issaquah, WA (US);
Mikhail Khasanov, Mountlake Terrace,
WA (US); Ramakrishnan Hariharan
Chandrasekharapuram, Seattle, WA
(US); Vijay Pratap Singh, Seattle, WA
(US); Carlos Alejandro Arguelles,
Shoreline, WA (US)

(73) Assignee: Amazon Technologies, Inc., Reno, NV
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 270 days.

(21) Appl. No.: 13/854,786

(22) Filed: Apr. 1,2013
(51) Imt.ClL
GO6F 15/16 (2006.01)
HO4L 29/06 (2006.01)
(52) US.CL
CPC . HO4L 67/42 (2013.01)
(58) Field of Classification Search
CPCcccee. HO4L 41/5019; HO4L 41/145; HO4L

41/5003; HO4L 43/50; HO4L 12/1489; HO4L
12/2697; HOAL 41/50

700

\

USPC ..o 709/204, 205, 206, 223-226
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
2005/0010661 Al* 1/2005 Southam et al. 709/224

2005/0267976 Al* 12/2005 Changetal. 709/230
2009/0240759 Al* 9/2009 Miyamoto etal. 709/201

* cited by examiner

Primary Examiner — Ruolei Zong
(74) Attorney, Agent, or Firm — Robert C. Kowert;
Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

(57) ABSTRACT

Systems and associated processes for testing a reverse proxy
server are disclosed. A backend proxy server test system can
receive a request from a reverse proxy server under test. The
request may be generated in response to a request from a test
client to access a backend service. In responding to the
received request, the backend proxy server test system can
include a copy of the received request. Upon the test client
receiving the response from the proxy server to the test cli-
ent’s request, the test client can extract the embedded copy of
the received request that the reverse proxy server generated to
determine whether it matches the request that a functioning
reverse proxy server generates. Based, at least in part on the
result of this comparison, the test client can determine
whether the reverse proxy server is malfunctioning.

20 Claims, 4 Drawing Sheets

702 704 106
Original Updated
HTTP request HTTP request
May contain special May contain special BACKEND
ltest instructions in fest instructions in PROXY
the headers the headers SERVER
4®_, (:)) TEST
TEST PROXY SYSTEM
CLIENT HTTP response SERVER HTTP response
Bodly contains #2 Body contains #2 (may execute the
serialized serialized special test

N

—

instructions in the

(:) headers)

US 9,203,931 B1

Sheet 1 of 4

Dec. 1, 2015

U.S. Patent

4)

[Ol4d

(s1epeay \w/ >
8y} ul suononJsul NG
1s9) |eads pazleLss
ay) a)noexa Aew) Z# suiejuos Apog
asuodsal 4] IH
NILSAS N\
1831 < .
d3INY3S S18peal sy}
AXOdd U/ suononJsuy }sa}
aNaMOVvd Jerads urejuoo Aepy
f \ }senbai 41 1H
/ peyepdn

g0/

-

(v)—>

H3IAAES
AXOdd

#0/

\/
pazjjelias
Z# suiejuoo Apog
asuodsal 4] IH

«—1)

N
sigpeasy ayj
Ul SUoRoNIISUY 187
[e108ds uiejuoo Aeyy

}senbai 41 IH
[euibuo

N

IN3ITO
1S3l

co/

ago/

US 9,203,931 B1

Sheet 2 of 4

Dec. 1, 2015

U.S. Patent

¢ Old

W31SAS
1831 J3AY3S
AXOdd AN3XOvE

ay0l

~.

ZAX 1S3N03Y e?

ZAX LSINOIY OL ISNOJSTY @ 01 ISNOJSIH AXOud
0Lz P ZAX 1SN0
\ e AXOdd d3Lvadn aNoD3s
HOLYINNA
A0INA3S Z 103d1a3y RERSEINES
ALIM 1S3NO3d OL ISNOJSIY @ AXO¥d
e~ P ZAX 1S3INDIY
NSNS e AXOud 31vadn 1S414
183l
L 1O3™Ia3d @r
HLIM LS3N0O3d OL 3SNOJSTd >
- | ZAX 1S3NO3Y
AHOLISOUN @ ZAX 183N0349 AXOud NO
S3INY Vol /
28V 1S3ND3IY OL ISNO4SIY @ N 9gv 1S3NOIY @V
H3IAYIS 5] 35NOdSTY AXOUd
¥ AXO¥d

IN3NO 1831

907 <

HOL1YH3INISD
S3NA

W0z <

ITNAON
NOILVOIdId3A

207

HOLVHANAD
1S3N03y

—
@ 2gY 1SINDTY AXOHd

A@ 289y 1S3N03Y

1 /mor

/ 0ce

/oom

U.S. Patent

300
Y

Dec. 1, 2015 Sheet 3 of 4

START

PROVIDE TESTING RULES
TO BACKEND PROXY
SERVER TEST SYSTEM
302

v

GENERATE REQUEST
ASSOCIATED WITH A TEST
304

v

SEND THE REQUEST TO A
PROXY SERVER UNDER
TEST
306

v

RECEIVE A RESPONSE TO
THE REQUEST
308

v

COMPARE THE RECEIVED
RESPONSE TO AN
EXPECTED RESPONSE
310

END

FIG. 3

US 9,203,931 B1

PROXY SERVER TEST PROCESS — TEST CLIENT

U.S. Patent

400
Y

Dec. 1, 2015 Sheet 4 of 4

START

RECEIVE TESTING RULES
FOR TESTING PROXY
SERVERS
402

I

RECEIVE REQUEST FROM A
PROXY SERVER UNDER
TEST
404

!

IDENTIFY TEST
PROCEDURE BASED ON
RECEIVED REQUEST
406

'

PERFORM IDENTIFIED TEST
PROCEDURE
408

|

GENERATE RESPONSE TO
RECEIVED REQUEST
410

y

PROVIDE THE RESPONSE
TO THE PROXY SERVER
UNDER TEST
412

END

FIG. 4

US 9,203,931 B1

PROXY SERVER TEST PROCESS — BACKEND
PROXY SERVER TEST SYSTEM

US 9,203,931 Bl

1
PROXY SERVER TESTING

BACKGROUND

A proxy server, or forward proxy server, is typically a
server or application that can act as an intermediary for a
client computing system that is seeking a resource from
another server. One common type of proxy server is a web
proxy that facilitates accessing content from the Internet.
Generally, the client computing system is a computing system
in an internal network. The client computing system can
generate a request that identifies a target server for accessing
a service or resource. This request is provided to the proxy
server, which then forwards the request to the target server via
the Internet. There are a number of types of forward proxy
servers in existence today. For example, an open proxy is a
type of forward proxy server.

In addition to forward proxy servers, there exist reverse
Proxy servers, or surrogate proxy servers. A reverse proxy
server receives requests from a computing system in an exter-
nal network (e.g., the Internet) and forwards them to a server
in an internal network for processing. In many cases, the
computer system generating the request may not be aware of
the existence of the server of the internal network.

BRIEF DESCRIPTION OF THE DRAWINGS

Throughout the drawings, reference numbers are re-used to
indicate correspondence between referenced elements. The
drawings are provided to illustrate embodiments of the inven-
tions described herein and not to limit the scope thereof.

FIG. 1 illustrates an embodiment of a proxy server test
environment.

FIG. 2 illustrates a second embodiment of a proxy server
test environment.

FIG. 3 presents a flowchart for an embodiment of a proxy
server test process for a test client.

FIG. 4 presents a flowchart for an embodiment of a proxy
server test process for a backend proxy server test system.

DETAILED DESCRIPTION

Introduction

Testing a reverse proxy server can be difficult. One reason
for the difficulty in testing a reverse proxy server is that a test
client system generally does not have access to the backend
systems, or the systems that are beyond the reverse proxy
server (e.g., the internal network servers or internal network
web servers). Thus, when the test client receives a response
from the reverse proxy server, the test client cannot assess
whether the response accurately reflects the content provided
by the backend system. Further, the test client cannot assess
whether the request it provided to the reverse proxy server
was accurately forwarded to the backend system. Even when
the test client determines that a received response is incorrect,
the test client cannot determine whether the fault lies with the
reverse proxy server or the backend system.

This disclosure describes systems and associated processes
for testing a proxy server. Generally, the embodiments herein
are described in the context of testing a reverse proxy system.
However, this disclosure is not limited as such and can be
applied to other types of proxy servers. Embodiments dis-
closed herein generally relate to a backend proxy server test
system that can receive a request from a reverse proxy server
under test. The request may be generated in response to a
request from a test client to access a backend service. In
responding to the received request, the backend proxy server

25

35

40

45

2

test system can include a copy of the received request. Upon
the test client receiving the response from the proxy server to
the test client’s request, the test client can extract the embed-
ded copy of the received request that the reverse proxy server
generated to determine whether it matches the request that a
functioning reverse proxy server generates. Based, at least in
part, on the result of this comparison, the test client can
determine whether the reverse proxy server is malfunction-
ing.

Example Proxy Server Test Environment

FIG. 1 illustrates an embodiment of a proxy server test
environment 100. The proxy server test environment 100 can
include a test client 102, a proxy server 104 and a backend
proxy server test system 106. Generally, the proxy server 104
is a reverse proxy server. However, in some cases the proxy
server 104 can include any type of proxy server including a
forward proxy server or an open proxy server. Further,
although the proxy server 104 is referred to as a server in the
example shown in FIG. 1, the proxy server 104 can include
any type of computing system that can function as a proxy or
a reverse proxy. Moreover, in some cases, the proxy server
104 can be an application configured to perform the function
of'a proxy server and that can execute in a computing system.
In some such cases, the proxy server 104 can be a proxy
service, which may run on one or more computing systems. In
the example illustrated in FIG. 1, the proxy server 104 repre-
sents a proxy server under test.

An example process performed with respect to the proxy
server test environment 100 will now be described with
respect to the numbered circles of FIG. 1. The process may
begin at operation 1 with the test client 102 sending a request,
such as a Hypertext Transfer Protocol (HTTP) request to the
proxy server 104. This HTTP request may include special test
instructions as, for example, part of the header of the request
packet.

Once the proxy server 104 receives the original HTTP
request, the proxy server 104 can forward the request to the
backend proxy server test system 106 at operation 2. In some
cases, the proxy server 104 may update or modify the HTTP
request before sending the HTTP request to the backend
proxy server test system 106.

The backend proxy server test system 106 may then seri-
alize the updated HTTP request received from the proxy
server 104 and include it as part of a response to the updated
HTTP request. This HTTP response, which may include a
serialized copy of the updated HTTP request as part of the
body or payload of the response, may then be provided to the
proxy server 104 at operation 3. In some cases, prior to
sending the HTTP response at operation 3, the backend proxy
server test system 106 may execute one or more special test
instructions or rules, which in some cases are included in or
identified by the header of the updated HTTP request received
from the proxy server 104.

Oncethe proxy server 104 receives the HI'TP response, the
proxy server 104 may forward the HTTP response to the test
client 102 at operation 4. In certain embodiments, the proxy
server 104 may perform some processing on the HTTP
response before forwarding the HTTP response to the test
client 102.

After the test client 102 receives the HT'TP response, the
test client 102 can extract the copy of the updated HTTP
request that was serialized and included in the body of the
HTTP response. The test client 102 can deserialize the copy
of the updated HTTP request and compare it to a copy of an
HTTP request that the test client 102 expects the proxy server
104 to have provided to the backend proxy server test system
106. If the deserialized copy of the HTTP request does not

US 9,203,931 Bl

3

match the expected HTTP request the test client 102 may
determine that the proxy server 104 is malfunctioning. Addi-
tional examples of test processes that may be performed with
respect to a proxy server test environment 100 are described
in further detail below with respect to FIGS. 3 and 4.

The testclient 102 illustrated in FIG. 1 can include any type
of computing system or device that can be used to facilitate
testing of the proxy server 104 by providing requests to a
proxy server 104 under test and comparing responses from
the proxy server 104 to expected responses. For example, the
test client 102 can include a personal computer, such as a
laptop or a desktop, a tablet, a server, or any other type of
computing system that can interact with a proxy server 104.

Similarly, the backend proxy server test system 106 can
include any type of computing system that can facilitate test-
ing the proxy server 104 by receiving a request from the proxy
server 104 and performing one or more test procedures, such
as including a copy of the received request in a response
thereby enabling the test client 102 to examine the request
provided by the proxy server 104 to the backend proxy server
test system 106. For example, the backend proxy server test
system 106 can include a personal computer, such as a laptop
or desktop, a server, or any other type of computing system
that can receive requests from a proxy server 104 and that can
provide responses to the received request. Further, in some
cases the backend proxy server test system 106 can include
any system that can emulate a service provider such as a web
service provider. Moreover, in some embodiments, the back-
end proxy server test system 106 may be a backend proxy
service test system configured to test a proxy service that may
be executed on one or more computing systems.

Although the example of FIG. 1 was described with respect
to HTTP requests, as described in more detail below, the
embodiments disclosed herein are not limited as such. Thus,
the test client 102, the proxy server 104, and the backend
proxy server test system 106 are not limited to systems that
process HTTP requests and HTTP responses.

Although FIG. 1 illustrates the test client 102 communi-
cating directly with the proxy server 104 and the proxy server
104 communicating directly with the backend proxy server
test system 106, in some embodiments, one or more of the test
client 102, the proxy server 104, and the backend proxy server
test system 106 may communicate via a network (not shown).
This network can include any type of network including, for
example, a local area network (LAN), a wide area network
(WAN), a wired network, a wireless network, a cellular net-
work, or any other type of network that can be used to facili-
tate communication between the test client 102, the proxy
server 104, and the backend proxy server test system 106. In
some cases, the network can include the internet.

Further, although FIG. 1 illustrates the proxy server 104
and the backend proxy server test system 106 as separate
systems, in some cases, the functionality of the proxy server
104 and of the backend proxy server test system 106 may be
implemented on a single system. For example, the proxy
server 104 may be executing on one thread or on one virtual
machine, and the backend proxy server test system 106 may
be executing on another thread or another virtual machine.
Similarly, in some cases, the test client 102 may be imple-
mented on the same system as the proxy server 104 and/or the
backend proxy server test system 106.

Second Example Proxy Server Test Environment

FIG. 2 illustrates a second embodiment of a proxy server
test environment 200. The proxy server test environment 200
can include a test client 102 and a backend proxy server test
system 106. Further, the proxy server test environment 200
can include a proxy server 104A and a proxy server 104B

10

15

20

25

30

35

40

45

50

55

60

65

4

(which may be referred to herein singularly as “a proxy server
104” or in the plural as the proxy servers 104"). Despite FIG.
2 illustrating only two proxy servers 104, the proxy server test
environment 200 may include any number of proxy servers
104. For example, the proxy server test environment 200 may
include one proxy server 104, as was illustrated in FIG. 1,
three proxy servers, four proxy servers, ten proxy servers, etc.
Similarly, although FIG. 2 illustrates one test client 102, the
proxy server test environment 200 may include any number of
test clients 102. In such cases, each test client 102 may com-
municate with a single proxy server 104 under test or with
multiple proxy servers 104. Moreover, despite FIG. 2 illus-
trating a single backend proxy server test system 106, the
proxy server test environment 200 may include multiple
backend proxy server test systems 106. In such cases, a back-
end proxy server test system 106 may be used to test a single
proxy server 104 or multiple proxy servers 104. In some
embodiments, each backend proxy server test system 106
may be configured to perform the same test operations with
respect to proxy servers 104 under test. Alternatively, at least
some backend proxy server test systems 106 may be config-
ured to perform different test operations.

The proxy server test environment 200 illustrates two
example processes that may be performed with respect to the
proxy server test environment 200, which will now be
described with respect to the numbered circles of FIG. 2. Each
of these processes illustrates a test operation that may be
performed with respect to a proxy server 104 under test.

The first process, which is described with respect to the
proxy server 104A is another embodiment of the test
described with respect to FIG. 1. At operation 1, the test client
102 may request access to a service or computing resource by
generating a request ABC. In some cases, the request ABC is
a request to access a service or resource at a path ABC (e.g.,
http://backendservice.com/NB/C).

The request ABC is provided to the proxy server 104A,
which may then forward the request as a proxy request ABC
at operation 2. In some cases the proxy request may be an
updated request ABC. As previously described, it is often the
case that a system attempting to access a service or resource
is not aware of the network configuration at an internal net-
work. Thus, a request that is properly crafted to access the
proxy server 104A may not be properly crafted to access a
system within the internal network. Thus, in certain cases, the
proxy server 104A may update the request to facilitate for-
warding the request to a backend server that is configured to
process the request. In the case illustrated in FIG. 2, this
backend server may be the backend proxy server test system
106.

The backend proxy server test system 106 may generate a
response to the request ABC, which may include a copy of the
proxy request ABC. This response to the request ABC is
provided to the proxy server 104A at operation 3. The proxy
server 104 A can then provide a proxy response to the request
ABC atoperation 4. This proxy response may be a copy of the
response generated by the backend proxy server test system
106 or it may be a modified version of the response generated
by the backend proxy server test system 106.

After receiving the response to its request, the test client
102 may process the response to determine whether the proxy
server 104A is malfunctioning, or is functioning as expected.
Processing the response may include extracting and/or dese-
rializing a copy of the proxy request ABC from the response
and comparing it to a request that the test client 102 expected
the proxy server 104 to provide to the backend proxy server
test system 106.

US 9,203,931 Bl

5

A second example test process is illustrated with respect to
the proxy server 104B. In the second example the test client
102 provides a request XYZ at operation 1'. In some cases, the
request XYZ is a request to access a service or resource at a
path XYZ (e.g., http://backendservice.com/X/Y/Z). At
operation 2' the proxy server 1046 provides a proxy request
XYZ based on the request XYZ to the backend proxy server
test system 106.

In this second example, the request XY Z is formed to cause
the backend proxy server test system 106 to provide a redirect
response twice before providing the proxy server 104B with
a response that can be provided to the test client 102. In some
cases, the backend proxy server test system 106 accesses a set
of rules associated with the request XYZ to determine that the
request XYZ includes performing a pair of redirects. At
operation 3', the backend proxy server test system 106 pro-
vides a first response to the request XYZ with a first redirect
address to the proxy server 1046. The first redirect address, or
redirect 1, is selected to cause the proxy server 104B to send
a first updated proxy request XYZ to the backend proxy
server test system 106 at operation 4'. In certain embodi-
ments, the updated proxy request XYZ may be the same
request as the original proxy request XYZ. In other cases, the
updated proxy request XYZ may be similar to the original
proxy request XY Z, but may include a different address based
on the first redirect address. Advantageously, in certain
embodiments, because the redirect addresses cause the proxy
server 104B to again contact the backend proxy server test
system 106, the backend proxy server test system 106 is able
to monitor the updated proxy requests generated by the proxy
server 104B in response to the provided redirect addresses.

As stated above, the second example illustrated in FIG. 2 is
associated with performing two redirects. Thus, at operation
5', the backend proxy server test system 106 sends a second
response with a second redirect address to the proxy server
104B. Similar to the first response, the second response
causes the proxy server 1046 to provide a second updated
proxy request XYZ to the backend proxy server test system
106 at operation 6'.

Afterreceiving the second updated proxy request XYZ, the
backend proxy server test system 106 may determine that the
number of redirects to be performed based on a test procedure
associated with the request XYZ have been performed and
thus, forwards a response to request XYZ to the proxy server
104B at operation 7' without including another redirect
address. As in the previous examples, the response to the
request XYZ can be forwarded to the test client 102 at opera-
tion 8' as a proxy response to request XYZ. In some cases, the
response that is forwarded by the proxy server 104B may be
a modified version of the response received from the backend
proxy server test system 106. As with the prior example, the
test client 102 can compare the response received at operation
8' to an expected response to determine whether the proxy
server 1046 is malfunctioning or not.

Although the second example test process described with
reference to FIG. 2 includes two redirects, any number of
redirects can be requested for use in testing the backend proxy
server test system 106. Further, the redirects can include any
type of HTTP response status code, such as the 3xx redirec-
tion codes described in the second example test process.
Additionally, any other type of HTTP response status code
can be sent in the request.

In some embodiments, as illustrated by the line 220 con-
necting the test client 102 to the backend proxy server test
system 106, the test client 102 may communicate directly
with the backend proxy server test system 106, or through a
network (not shown), in addition to the communication via

20

30

40

45

55

6

the proxy servers 104 under test. In some cases, this commu-
nication channel 220 between the test client 102 and the
backend proxy server test system 106 via the line 220 can be
considered an out-of-band communication channel. The
channel 220 can be utilized, in some cases, to provide testing
rules or procedures to the backend proxy server test system
106. These testing rules can include any type of rules for
facilitating test of the proxy servers 104. Further, the testing
rules may be associated with particular paths or keywords.
Thus, for example, the path ABC may be associated with one
set of testing rules and the path XYZ may be associated with
another set of testing rules, which may or may not be over-
lapping.

As can be seen from FIG. 2, the test client 102 and the
backend proxy server test system 106 may include a number
of modules or subsystems that may be utilized to facilitate
performing test procedures with respect to the proxy servers
104 under test, including the previously described example
test procedures. For instance the test client 102 can include a
request generator 202, a verification module 204, and a rules
generator 206. The request generator 202 can include any
system that can be utilized to generate requests to access a
backend service, which can then be forwarded to a proxy
server 104. These generated requests may include informa-
tion or keywords that can cause the backend proxy server test
system 106 to perform test procedures associated with the
keywords. For instance, the ABC of the request ABC may
represent a keyword or a path associated with a rule that
causes the backend proxy servertest system 106 to implement
a particular test process.

The verification module 204 can include any system that
can verify whether a proxy server 104 is functioning correctly
based on a received response to one of the requests generated
by the request generator 202. As has previously been
described, verifying the proxy server’s 104 status can involve
the verification module 204 extracting a copy of'a request sent
by a proxy server 104 to a backend proxy server test system
106 included in a response to an initial service request
received at the test client 102. The verification module 204
may compare the extracted copy of the proxy request and/or
the received response to expected data to determine whether
the proxy server 104 is malfunctioning.

The rules generator 206 can include any system that can
generate and/or provide a rule for testing a proxy server 104
to the backend proxy server test system 106. In some cases,
the rules generator 206 may include generating keywords that
trigger particular test procedures when included in the request
to the proxy server 104 by the request generator 202.

Thebackend proxy server test system 106 may also include
a number of subsystems or modules that facilitate testing the
proxy server 104. These subsystems or modules can include a
rules repository 214, a test engine 212, and a service emulator
210. The rules repository 214 can include any type of reposi-
tory or database that can store rules for testing a proxy server
104. Further, in some cases the rules repository 214 may also
include storage for storing the status of tests performed with
respect to a proxy server 104. For instance, the rules reposi-
tory may keep track of a number of redirect requests required
by a test process and/or a number of times that a redirect
process has successfully or unsuccessfully been completed.
Although illustrated as part of the backend proxy server test
system 106, in some cases the rules repository 214 may be a
separate system, which may communicate with the backend
proxy server test system 106 directly or via a network (not
shown).

The test engine 212 can include any system that can per-
form the test procedures associated with testing a proxy

US 9,203,931 Bl

7

server 104 including performing a test procedure stored at the
rules repository 214, which may be identified based on the
request received from the proxy server 104. Further, the ser-
vice emulator 210 can include any system that can emulate a
backend service such as a web service. In certain embodi-
ments, by emulating the backend service, the backend proxy
server test system 106 can perform more robust tests, such as
testing how the proxy server 104 responds to robot feeds,
media downloads, encrypted responses, secure resource
access requests, etc.

Although illustrated and described as a distinct system, in
some embodiments the functionality of the backend proxy
server test system 106 may be implemented in a backend
system configured to provide a backend service, such as a web
service. In such embodiments, the functionality to test a
proxy server 104 can then be activated via a keyword or
through an out-of-band communication via the channel 220.
Advantageously, by combining the functionality of the back-
end proxy server test system 106 with the functionality of a
non-test backend system, an administrator can switch
between using the proxy server 104 to handle user traffic (e.g.,
customer traffic) and testing the proxy server 104 while main-
taining a network configuration (e.g., without switching the
computing systems that the proxy server 104 communicates
with in an internal network).

As the examples above have illustrated, a number of pro-
cesses for testing the proxy servers 104 utilize a test client 102
and a backend proxy server test system 106. However, this
disclosure is not limited as such. In some cases, the proxy
server 104 may have at least some functionality tested by the
test client 102 or the backend proxy server test system 106.
For example, a traffic control or throttling test procedure may
be implemented by the test client 102. In such cases, the test
client 102 using, for example, the request generator 202 can
generate requests that cause the proxy server 104 to block the
test client 102. For instance, the request generator 202 can
generate requests at a rate that exceeds a threshold set at the
proxy server 104 for individual request providers. If the veri-
fication module 204 receives a response from the proxy server
104 that indicates that the test client 102 may be been blocked
or blacklisted (e.g., a 502 response or other Sxx response), the
test client 102 may determine that a throttling procedure is
functioning.

In some cases, the throttling test may further include send-
ing a request (e.g., an echo request) to the proxy server 104 at
a time point after when the test client 102 expects to be
de-blacklisted or unblocked. Then, if the verification module
204 determines that a subsequent response indicates the
proxy server 104 allowed the request to proceed to a backend
server (e.g., the backend proxy server test system 106) then
the test client 102 may determine that a throttling service for
the proxy server 104 is functioning correctly.

Example Proxy Server Test Process—Test Client

FIG. 3 presents a flowchart for an embodiment of a proxy
server test process 300 for a test client 102. The process 300
can be implemented by any system that can test a proxy server
104 by comparing a response to a request to access a service
received from the proxy server 104 to an expected response.
For example, the process 300, in whole or in part, can be
implemented by a test client 102, a request generator 202, a
verification module 204, or a rules generator 206, to name a
few. Although any number of systems, in whole or in part, can
implement the process 300, to simplify discussion, portions
of the process 300 will be described with reference to par-
ticular example systems.

The process 300 begins at block 302 where, for example,
the rules generator 206 provides testing rules, or procedures,

10

15

20

25

30

35

40

45

50

55

60

65

8

to the backend proxy server test system 106. In some embodi-
ments, the rules generator 206 generates the testing rules.
However, in other cases, the testing rules may be supplied by
a user, such as an administrator. Further, in some cases, the
testing rules may be stored at a local repository included with
the test client 102 or at a repository accessible via a network.
In such cases, the rules generator 206 may access the reposi-
tory to obtain the testing rules. The testing rules may include
any type of test action, process, or command that can be
performed by the backend proxy server test system 106 to test
a proxy server 104. In some cases the testing rules may be
associated with a path or a keyword that, when included with
a request to access a service, may trigger or indicate to the
backend proxy server test system 106 that a corresponding
testing rule should be performed. In some cases, the block 302
may be optional. For example the testing rules may be stored
ator included with the backend proxy server test system 106.
In other cases, each proxy server 104 under test may be tested
using the same testing procedures, thereby making it unnec-
essary to supply or identity different testing rules.

Atblock 304, the request generator 202 generates a request
associated with a test for testing a proxy server 104. This
request can be formatted as an HTTP request or may be
formatted based on any other protocol for communicating
with a network device. For example, the request can be for-
matted as a file transfer protocol (FTP) request, a secure
HTTP request such as an HT'TPS or S-HTTP request, or any
other protocol which could be used to communicate with a
backend service via a proxy server 104. Typically, the request
generated at the block 304 mimics a request to access a
backend service, thereby causing the proxy server 104 to
attempt to access the backend service at the backend proxy
server test system 106, which in some cases may emulate the
backend service. In some instances, the request generated at
the block 304 includes information that facilitates performing
or identifying a test procedure for testing the proxy server
104. For example, the request may include an amount of sleep
time or a number of redirects that the test client 102 desires
the backend proxy server test system 106 to perform in its
testing of the proxy server 104.

In some embodiments, the request may include data that is
expected to cause the proxy server 104 under test to perform
one or more actions. For instance, the request may include
Personally Identifiable Information (PII) or any other type of
information that should not be sent in plain text to a backend
service. For example, the PII can include a credit or debit card
number, an image of a driver’s license, and so forth. Further,
the request may include a file that should be encrypted before
being provided to a backend server. In such embodiments, if
the proxy server 104 is not malfunctioning, it should identify
the data as PII and encrypt the data before it is sent to the
backend proxy server test system 106.

At the block 306, the request generator 202 sends the
request generated at the block 304 to a proxy server 104 under
test. In response to the request, the proxy server 104 may
perform its normal processing function, which include for-
warding the request sent by the test client 102 to the backend
proxy server test system 106 without additional processing.
Alternatively, in some cases, the proxy server 104 may per-
form some processing as a result of the request sent by the test
client 102 to obtain a modified request, which may be for-
warded to the backend proxy server test system 106 in place
of'the request generated at the block 304. As will be described
further with respect to FIG. 4, the backend proxy server test
system 106 may perform one or more test procedures based
on the request sent by the test client 102 and/or a set of testing
rules accessible by the backend proxy server test system 106.

US 9,203,931 Bl

9

The verification module 204, at block 308, receives a
response from the proxy server 104 to the request that was
generated by the request generator 202 at the block 304. At
block 310, the verification module 204 compares the received
response to an expected response. As has previously been
described, comparing the received response to an expected
response can include extracting a payload from the received
response that was included by the backend proxy server test
system 106. This payload may include a copy of the request
that a proxy server 104 under test provided to the backend
proxy server test system 106. In addition, or alternatively, the
payload may include results and/or information associated
with one or more tests performed by the backend proxy server
test system 106 with respect to the proxy server 104.

In some cases, the extracted payload may be deserialized
by the verification module 204 before it is compared to an
expected response. Generally, the expected response is a
response that a non-malfunctioning proxy server 104 would
generate upon receiving the request generated at the block
304. In some cases, the expected response is a response that a
non-malfunctioning proxy server 104 would provide upon
receiving a particular response from the backend proxy server
test system 106. Further, the expected response may include
the response that a user (e.g., an administrator or a manufac-
turer of the proxy server 104) specifies the proxy server 104
should generate or provide in response to a particular input
from the test client 102 and/or the backend proxy server test
system 106.

In some cases, the expected response is a request that the
verification module 204 expects the proxy server 104 to pro-
vide to the backend proxy server test system 106 as opposed
to the response anticipated from a theoretical backend service
(e.g., web service) if it were to receive the request. For
instance, continuing the example above relating to PII, the
response may be a copy of the request generated at the block
304, but with the PII encrypted. However, if the PII was not
encrypted or was improperly encrypted, the verification mod-
ule 204 can determine that the proxy server 104 is malfunc-
tioning. To determine that the PIL, or other sensitive informa-
tion, was properly encrypted, the verification module can
attempt to decrypt the information and compare the decrypted
information to the information that was provided in the
request generated at the block 304. In other cases, the
expected response is a response that the verification module
204 would expect to receive from a theoretical backend ser-
vice, which may be emulated by the backend proxy server test
system 106, if the proxy server 104 is functioning and there-
fore capable of appropriately forwarding a request to the
backend service.

If the verification module 204 determines that the proxy
server is malfunctioning, or may be malfunctioning to a
degree of probability, the test client 102 may alert a user, such
as an administrator. The alert may be provided by, for
example, e-mailing the user, texting the user, flashing an alert
on a display associated with the test client 102, or performing
any other type of procedure that may be used to alert a user.
Further, in some cases, if the test client 102 determines that
the proxy server 104 may be malfunctioning, the test client
102 can initiate additional tests of the proxy server 104 by, for
example, causing the request generator 202 to generate addi-
tional requests associated with additional test procedures.
Further, in some cases, if the test client 102 determines that a
proxy server 104 may be malfunctioning, the test client 102
may store the test results in a log.

Example Proxy Server Test Process—Backend Proxy Server
Test System

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 4 presents a flowchart for an embodiment of a proxy
server test process 400 for a backend proxy server test system
106. The process 400 can be implemented by any system that
can test a proxy server 104 by performing a test procedure in
response to a request received from the proxy server 104. For
example, the process 400, in whole or in part, can be imple-
mented by a backend proxy server test system 106, a test
engine 212, or a service emulator 210, to name a few.
Although any number of systems, in whole or in part, can
implement the process 400, to simplify discussion, portions
of the process 400 will be described with reference to par-
ticular example systems.

The process 400 begins at block 402 where, for example,
the backend proxy server test system 106 receives one or
more testing rules for testing proxy servers. These rules may
be stored at a rules repository 214 and may include testing
procedures for testing proxy servers. Further, the testing rules
may include selection rules for determining which test pro-
cedure or procedures to implement when testing a particular
proxy server. For example, as previously described, particular
keywords or paths in an HTTP request may be associated with
particular test rules or procedures. In some cases, the testing
rules may be received from a test client 102. In other cases, the
testing rules may be supplied by a user (e.g., an administra-
tor).

At block 404, the backend proxy server test system 106
receives a request from a proxy server 104 under test to access
a service or a resource from the backend proxy server test
system 106. In some cases, the backend proxy server test
system 106 may emulate a backend service.

At block 406, a test engine 212 may identify a test proce-
dure based, at least in part, on the received request that was
received at the block 404. This test procedure may be identi-
fied based on instructions embedded in the received request.
Alternatively, the test procedure may be identified from a set
of'test procedures stored at the rules repository 214 based on
the received request and/or the proxy server 104.

At block 408, the test engine 212 performs the identified
test procedure. In certain cases, the block 408 may include
performing multiple test procedures. These test procedures
can include any type of procedure for testing the proxy server
104 under test. For example, as has previously been
described, in some cases the test procedure may be a type of
echo procedure that includes serializing a copy of the request
received at the block 404 and including the serialized copy of
the request as part of a response to the proxy server’s 104
request. In some embodiments, the test procedure may
include processing a command received from the proxy
server 104 and/or identified based on a request received from
the proxy server 104.

In some cases, the identified test may include performing a
sleep process, or waiting for a period of time. This period of
time may be identified by the test procedure or may be based
oninformation included with the request received at the block
404. Advantageously, in certain embodiments, the wait or
sleep time may be used to facilitate load testing or resilience
testing of the proxy server 104. For example, the test client
102 can generate a number of requests to the proxy server 104
with each request including a sleep command in a header of
the request. As the requests accumulate at the backend proxy
server test system 106 without being processed, the number
of outstanding requests maintained by the proxy server 104
will eventually exceed a number of requests that a proxy
server 104 can maintain at a given time. Based on the results
received at the test client 102 when the proxy server 104 has
reached a maximum number of outstanding requests, the test
client 102 can determine whether the proxy server 104

US 9,203,931 Bl

11

handles excessive requests in a graceful manner or whether
the proxy server 104 malfunctions or behaves in an unantici-
pated manner, such as causing a denial of service or the loss
of requests. In some cases, load testing may be performed
without a sleep command. For example, the test client 102
may generate requests at a rate greater than a rate at which the
proxy server 104 can process requests. In other cases, load
testing may involve a combination of providing requests at a
rate greater than the rate at which the proxy server 104 can
process requests and providing requests with a sleep com-
mand that delays responses to requests forwarded by the
proxy server 104 to the backend proxy server test system 106.

Another example of a test procedure that may be identified
atthe block 408, which has been previously described, relates
to processing redirects. In testing the processing of redirects
by the proxy server 104, the backend proxy server test system
106 can determine a number of redirects to have the proxy
server 104 perform based on, for example, the request
received from the proxy server 104 or the test procedure
accessed from the rules repository 214. The backend proxy
server test system 106 can generate a response to the received
request that causes the proxy server 104 to send an updated
request to the backend proxy server test system 106 based on
aresponse that directs the proxy server 104 to again access the
backend proxy server test system 106 to complete the request
received from the test client 102. In other words, the original
response from the backend proxy server test system 106 may
simulate the situation where a backend service response to a
proxy request informs the proxy server 104 that it should send
the request to another backend system or backend service
provider. The backend proxy server test system 106 can then
keep track of the number of redirects performed by counting
the number of times the backend proxy server test system 106
sends a response with information or instructions causing the
proxy server 104 to redirect its request. In some cases, the
count may be tracked by modifying the redirect address each
time the proxy request is received at the backend proxy server
test system 106. For example, the redirect address may
include a count value at the end of the address to keep track of
the number of redirects performed (e.g., redirect_address 1,
redirect_address_ 2, redirect_address_ 3, etc.).

At block 410, the test engine generates a response to the
received request. Typically, but not necessarily, this response
will include a payload to be provided to a test client 102. As
has previously been discussed, this payload may include a
serialized copy of the one or more requests received from the
proxy server 104. In some cases, the payload may include the
response that would be provided by a backend system if it
were to receive the request originally generated by the test
client 102. For instance, the request may include a web page,
an audio file, a confirmation response for a request, etc. In
some embodiments, the process of performing the test pro-
cedure results in a response being generated. For example, a
redirect test may include generating a redirect response to a
request received from the proxy server 104. In such cases, the
blocks 408 and 410 may be combined into a single process.

At block 412, the backend proxy server test system 106
provides the response generated at the block 410 to the proxy
server 104 under test. The proxy server 104 may then forward
the response to the test client 102. Alternatively, if the
response includes redirect information, the proxy server 104
may send an updated request to the backend proxy server test
system 106. In some such cases, the updated request may
include the response that was received at the block 412.
Alternatively, in some cases that include a redirect address,
the proxy server 104 may discard the response received from
the backend proxy server test system 106 at the block 412

10

15

20

25

30

35

40

45

50

55

60

65

12

when sending the updated request to the backend proxy server
test system 106. Generally, the response provided at the block
412 to the proxy server 104 under test can be provided to a test
client 102, which can determine whether the response
matches an expected response as has previously been
described with respect to FIG. 3.

Terminology

A number of computing systems have been described
throughout this disclosure. The descriptions of these systems
are not intended to limit the teachings or applicability of this
disclosure. For example, the test client 102 described herein
can generally include any computing device(s), such as desk-
tops, laptops, video game platforms, television set-top boxes,
televisions (e.g., internet TVs), computerized appliances, and
wireless mobile devices (e.g. smart phones, PDAs, tablets, or
the like), to name a few. Further, it is possible for the user
systems described herein to be different types of devices, to
include different applications, or to otherwise be configured
differently. In addition, the user systems described herein can
include any type of operating system (“OS”). For example,
the mobile computing systems described herein can imple-
ment an Android™ OS, a Windows® OS, a Mac® OS, a
Linux or Unix-based OS, or the like.

Further, the processing of the various components of the
illustrated systems can be distributed across multiple
machines, networks, and other computing resources. In addi-
tion, two or more components of a system can be combined
into fewer components. For example, the various systems
illustrated as part of the backend proxy server test system 106
can be distributed across multiple computing systems, or
combined into a single computing system. Further, various
components of the illustrated systems can be implemented in
one or more virtual machines, rather than in dedicated com-
puter hardware systems. Likewise, the data repositories
shown can represent physical and/or logical data storage,
including, for example, storage area networks or other dis-
tributed storage systems. Moreover, in some embodiments
the connections between the components shown represent
possible paths of data flow, rather than actual connections
between hardware. While some examples of possible connec-
tions are shown, any of the subset of the components shown
can communicate with any other subset of components in
various implementations.

Depending on the embodiment, certain acts, events, or
functions of any of the algorithms, methods, or processes
described herein can be performed in a different sequence,
can be added, merged, or left out all together (e.g., not all
described acts or events are necessary for the practice of the
algorithms). Moreover, in certain embodiments, acts or
events can be performed concurrently, e.g., through multi-
threaded processing, interrupt processing, or multiple proces-
sors or processor cores or on other parallel architectures,
rather than sequentially.

Each of the various illustrated systems may be imple-
mented as a computing system that is programmed or config-
ured to perform the various functions described herein. The
computing system may include multiple distinct computers
or computing devices (e.g., physical servers, workstations,
storage arrays, etc.) that communicate and interoperate over a
network to perform the described functions. Each such com-
puting device typically includes a processor (or multiple pro-
cessors) that executes program instructions or modules stored
in a memory or other non-transitory computer-readable stor-
age medium. The various functions disclosed herein may be
embodied in such program instructions, although some or all
of'the disclosed functions may alternatively be implemented
in application-specific circuitry (e.g., ASICs or FPGAs) of the

US 9,203,931 Bl

13

computer system. Where the computing system includes mul-
tiple computing devices, these devices may, but need not, be
co-located. The results of the disclosed methods and tasks
may be persistently stored by transforming physical storage
devices, such as solid state memory chips and/or magnetic
disks, into a different state. Each process described may be
implemented by one or more computing devices, such as one
or more physical servers programmed with associated server
code.

Conditional language used herein, such as, among others,
“can,” “might,” “may,” “e.g.,” and the like, unless specifically
stated otherwise, or otherwise understood within the context
as used, is generally intended to convey that certain embodi-
ments include, while other embodiments do not include, cer-
tain features, elements and/or states. Thus, such conditional
language is not generally intended to imply that features,
elements and/or states are in any way required for one or more
embodiments or that one or more embodiments necessarily
include logic for deciding, with or without author input or
prompting, whether these features, elements and/or states are
included or are to be performed in any particular embodi-
ment. The terms “comprising,” “including,” “having,” and the
like are synonymous and are used inclusively, in an open-
ended fashion, and do not exclude additional elements, fea-
tures, acts, operations, and so forth. Also, the term “or” is used
in its inclusive sense (and not in its exclusive sense) so that
when used, for example, to connect a list of elements, the term
“or” means one, some, or all of the elements in the list. In
addition, the articles “a” and “an” are to be construed to mean
“one or more” or “at least one” unless specified otherwise.

Conjunctive language such as the phrase “at least one of X,
Y and Z,” unless specifically stated otherwise, is otherwise
understood with the context as used in general to convey that
an item, term, etc. may be either X, Y or Z. Thus, such
conjunctive language is not generally intended to imply that
certain embodiments require at least one of X, at least one of
Y and at least one of Z to each be present.

While the above detailed description has shown, described,
and pointed out novel features as applied to various embodi-
ments, it will be understood that various omissions, substitu-
tions, and changes in the form and details of the devices or
algorithms illustrated can be made without departing from the
spirit of the disclosure. Thus, nothing in the foregoing
description is intended to imply that any particular feature,
characteristic, step, operation, module, or block is necessary
or indispensable. As will be recognized, the processes
described herein can be embodied within a form that does not
provide all of the features and benefits set forth herein, as
some features can be used or practiced separately from others.
The scope of protection is defined by the appended claims
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

What is claimed is:

1. A method for testing a proxy server, the method com-
prising:

performing operations by a backend proxy server test sys-

tem comprising one or more processors, the backend

proxy server test system configured to emulate a back-

end service, the operations comprising:

receiving, from a proxy server under test, a request to
access the backend service;

identifying a test procedure based, at least in part, on the
received request;

performing the test procedure;

generating a response to the received request based, at
least in part, on the performed test procedure, the

15

20

25

30

40

45

60

65

14

response configured to emulate, at least in part, a
response from the backend service, wherein the
response comprises a copy of the request received
from the proxy server under test, the copy enabling a
test client to compare the request from the proxy
server under test to an expected request, the test client
comprising a computing system that caused the proxy
server under test to provide the received request; and

transmitting the generated response to the proxy server
under test.

2. The method of claim 1, wherein performing the test
procedure comprises:

serializing the received request to obtain a serialized copy
of the received request, wherein the copy of the received
request comprises the serialized copy of the received
request; and

including the serialized copy of the received request in the
generated response.

3. The method of claim 1, wherein performing the test

procedure comprises:

determining a requested number of redirects based on the
identified test procedure;

determining whether a performed number of redirects sat-
isfies the requested number of redirects based on a redi-
rect count; and

in response to determining that the performed number of
redirects does not satisfy the requested number of redi-
rects, said generating the response to the received
request comprises:
generating the response to the received request that

causes the proxy server under test to send a second
request to the backend proxy server test system; and
modifying the redirect count by one.
4. The method of claim 1, wherein the request provided by
the proxy server under test is a modified version of an original
request sent by the test client and received by the proxy server
under test.
5. The method of claim 1, wherein the test procedure com-
prises waiting a sleep time period before transmitting the
generated response to the proxy server under test.
6. The method of claim 1, wherein the test procedure is
received from the test client.
7. The method of claim 1, wherein the test procedure is
identified based, at least in part, on the proxy server under test.
8. The method of claim 1, wherein at least part of the test
procedure is included as information with the request from
the proxy server under test, and wherein the test procedure is
identified based, at least in part, on the included information.
9. The method of claim 1, wherein the request includes at
least one of a keyword or a path, and wherein the at least one
of'the keyword or the path is associated with a rule that causes
the backend proxy service test system to perform the test
procedure.
10. A system for testing a proxy service, the system com-
prising:
a backend proxy service test system comprising one or
more processors, the backend proxy service test system
further comprising a test engine configured to:
receive, from a proxy service under test, a service
request to access a service of a backend service pro-
vider;

generate a response to the service request, the response
configured to emulate, at least in part, a response from
the backend service provider, wherein the response
comprises the received service request thereby
enabling a test system to compare the received service
request from the proxy service under test to an

US 9,203,931 Bl

15

expected request, the test system comprising a com-
puting system that caused the proxy service under test
to provide the received service request; and

transmit the generated response to the proxy service
under test.

11. The system of claim 10, further comprising a rules
repository configured to store a set of test procedures, and
wherein the test engine is further configured to:

determine a test procedure from the rules repository,

wherein the test procedure is determined based, at least
in part, on information included with the service request;
execute the test procedure; and

generate the response to the service request based, at least

in part, on the executed test procedure.

12. The system of claim 10, further comprising a service
emulator configured to emulate the service of the backend
service provider, and wherein the test engine is further con-
figured to generate the response to the service request based,
at least in part, on the emulated service of the backend service
provider.

13. The system of claim 10, wherein the proxy service
under test is a reverse proxy service.

14. The system of claim 10, further comprising the test
system configured to:

generate a test command configured to cause the backend

proxy service test system to perform a test procedure, the
test command formatted to mimic, at least in part, a
request to access the service of the backend service
provider;

provide the test command to the proxy service under test in

a request to access the service;

receive the response from the proxy service under test; and

compare the received response to an expected response, the

expected response comprising a response that a func-
tioning proxy service would provide responsive to the
request to access the service at the backend proxy ser-
vice test system.

15. The system of claim 10, further comprising the test
system configured to:

receive the response from the proxy service under test;

extract the service request from the response; and

compare the extracted service request to an expected
request expected to be generated by a non-malfunction-
ing proxy server.

16. A system for testing a proxy server, the system com-
prising:

10

15

20

25

30

35

40

45

16

a test system comprising one or more processors, the test

system further comprising:

a request generator configured to:

generate a test command configured to cause a backend
proxy server test system to perform one or more test
procedures with respect to a proxy server under test,
the test command formatted to mimic, at least in part,
a request to access a service of a backend service
provider; and

provide the test command to the proxy server under test
in a request to access the service, the backend proxy
server test system configured to emulate, at least in
part, the backend service provider; and

a verification module configured to:

receive, from the proxy server under test, a response to
the request to access the service;

extract, from the response, a copy of a service request
sent by the proxy server under test to the backend
proxy server test system, the service request gener-
ated by the proxy server under test in response to
receiving the request; and

compare the extracted copy of the service request to an
expected request that is expected to be generated by a
non-malfunctioning proxy server in response to
receiving the request.

17. The system of claim 16, further comprising a rules
generator configured to provide the backend proxy server test
system with a set of test procedures for testing proxy servers.

18. The system of claim 16, wherein the request generator
is further configured to include one or more test identifiers
with the test command thereby enabling the backend proxy
server test system to select one or more test procedures for
testing the proxy server under test.

19. The system of claim 16, wherein the request generator
is further configured to include an instruction for performing
a test procedure with the test command thereby enabling the
backend proxy server test system to perform the test proce-
dure.

20. The system of claim 16, wherein the verification mod-
ule is further configured to:

access a payload included with the received response;

deserialize the payload to obtain a deserialized payload;

and

compare at least a portion of the deserialized payload to an

expected response.

#* #* #* #* #*

